23,446 research outputs found

    Analysis of MAGSAT and surface data of the Indian region

    Get PDF
    Techniques and significant results of an analysis of MAGSAT and surface data of the Indian region are described. Specific investigative tasks included: (1) use of the multilevel data at different altitudes to develop a model for variation of magnetic anomaly with altitude; (2) development of the regional model for the description of main geomagnetic field for the Indian sub-continent using MAGSAT and observatory data; (3) development of regional mathematical model of secular variations over the Indian sub-continent; and (4) downward continuation of the anomaly field obtained from MAGSAT and its combination with the existing observatory data to produce a regional anomaly map for elucidating tectonic features of the Indian sub-continent

    Distributed Delayed Stochastic Optimization

    Full text link
    We analyze the convergence of gradient-based optimization algorithms that base their updates on delayed stochastic gradient information. The main application of our results is to the development of gradient-based distributed optimization algorithms where a master node performs parameter updates while worker nodes compute stochastic gradients based on local information in parallel, which may give rise to delays due to asynchrony. We take motivation from statistical problems where the size of the data is so large that it cannot fit on one computer; with the advent of huge datasets in biology, astronomy, and the internet, such problems are now common. Our main contribution is to show that for smooth stochastic problems, the delays are asymptotically negligible and we can achieve order-optimal convergence results. In application to distributed optimization, we develop procedures that overcome communication bottlenecks and synchronization requirements. We show nn-node architectures whose optimization error in stochastic problems---in spite of asynchronous delays---scales asymptotically as \order(1 / \sqrt{nT}) after TT iterations. This rate is known to be optimal for a distributed system with nn nodes even in the absence of delays. We additionally complement our theoretical results with numerical experiments on a statistical machine learning task.Comment: 27 pages, 4 figure

    Energy efficient engine, high pressure turbine thermal barrier coating. Support technology report

    Get PDF
    This report describes the work performed on a thermal barrier coating support technology task of the Energy Efficient Engine Component Development Program. A thermal barrier coating (TBC) system consisting of a Ni-Cr-Al-Y bond cost layer and ZrO2-Y2O3 ceramic layer was selected from eight candidate coating systems on the basis of laboratory tests. The selection was based on coating microstructure, crystallographic phase composition, tensile bond and bend test results, erosion and impact test results, furnace exposure, thermal cycle, and high velocity dynamic oxidation test results. Procedures were developed for applying the selected TBC to CF6-50, high pressure turbine blades and vanes. Coated HPT components were tested in three kinds of tests. Stage 1 blades were tested in a cascade cyclic test rig, Stage 2 blades were component high cycle fatigue tested to qualify thermal barrier coated blades for engine testing, and Stage 2 blades and Stage 1 and 2 vanes were run in factory engine tests. After completion of the 1000 cycle engine test, the TBC on the blades was in excellent condition over all of the platform and airfoil except at the leading edge above midspan on the suction side of the airfoil. The coating damage appeared to be caused by particle impingement; adjacent blades without TBC also showed evidence of particle impingement

    Analysis of MAGSAT data of the Indian region

    Get PDF
    Data tapes were decoded and 24 tracks over the Indian region were reduced to common elevation. Profiles of raw scalar and vector field data and the residuals along few passes were prepared. An anomaly data set was created from the Investigator-B tape. Data was sampled on an 0.5 deg by 0.5 deg grid

    A quasi-linear control theory analysis of timesharing skills

    Get PDF
    The compliance of the human ankle joint is measured by applying 0 to 50 Hz band-limited gaussian random torques to the foot of a seated human subject. These torques rotate the foot in a plantar-dorsal direction about a horizontal axis at a medial moleolus of the ankle. The applied torques and the resulting angular rotation of the foot are measured, digitized and recorded for off-line processing. Using such a best-fit, second-order model, the effective moment of inertia of the ankle joint, the angular viscosity and the stiffness are calculated. The ankle joint stiffness is shown to be a linear function of the level of tonic muscle contraction, increasing at a rate of 20 to 40 Nm/rad/Kg.m. of active torque. In terms of the muscle physiology, the more muscle fibers that are active, the greater the muscle stiffness. Joint viscosity also increases with activation. Joint stiffness is also a linear function of the joint angle, increasing at a rate of about 0.7 to 1.1 Nm/rad/deg from plantar flexion to dorsiflexion rotation
    corecore